
Processing RAW Images in MATLAB

Rob Sumner

Department of Electrical Engineering, UC Santa Cruz

May 19, 2014

Abstract

This is an instructional document concerning the steps required to read and display the unprocessed
sensor data stored in RAW photo formats. RAW photo files contain the raw sensor data from a digital
camera; while it can be quite scientifically useful, raw data must generally be processed before it can
be displayed. In this tutorial, the nature of the raw sensor data is explored. The scaling and color
adjustments applied in the standard processing/display chain are discussed. Solutions for reading RAW
image data into MATLAB are presented, as well as a standard workflow for achieving a viewable output.

1 Introduction

In the fields of image processing and computer vision, researchers are often indifferent to the origins of the
images they work with. They simply design their algorithms to consider the image (typically an 8-bit in-
tensity image or three-channel RGB image with 8 bits per channel) as a multivariate function, a stochastic
field, or perhaps a graph of connected pixels.

Sometimes, however, it is important to truly relate an image to the light of the scene from which it was
captured. For example, this is the case for any processing that models the behavior of the imaging sensor,
such as some High Dynamic Range (HDR) approaches and scientific imaging (e.g., astronomy). In such a
case, it is vital to know the entire processing chain that was applied to an image after being captured. If
possible, the best image to deal with is the sensor data straight from the camera, the raw data.

Access to the raw data is also of interest to anyone who wishes to work on the steps of the image processing
flow that takes data from the sensor of the camera to a nice output image. For example, a researcher who
works on algorithms for demosaicing Bayer pattern images will need to be able to access such data for real
tests.

Though many devices only output a processed digital image, some cameras allow direct access to the infor-
mation recorded by the imaging sensor itself. Typically, these are mid- to high-range DSLRs (Digital Single
Lens Reflex cameras), which have the option to output RAW data files. In the future it may be possible to
access the sensor data from other camera types (such as those on smart phones), in which case the following
general principles will still apply (though the specific programming may be different).

‘RAW’ is a class of computer files which typically contain an uncompressed image containing the sensor pixel
values as well as a large amount of meta-information about the image generated by the camera (the Exif
data). RAW files themselves come in many proprietary file formats (Nikon’s .NEF, Canon’s .CR2, etc) and
at least one common open format, .DNG, which stands for Digital Negative. The latter indicates how these
files are supposed to be thought of by digital photographers: the master originals, repositories of all the
captured information of the scene. RAW files are intentionally inscrutable data structures, but have been
reverse engineered with some success[1] to gain access to the raw data inside.

For the rest of this paper, we use the capitalized term RAW when referring to an image file of one file format
or another (e.g., .CR2), whereas by a (lowercase) raw image we mean unprocessed pixel values directly
output by the imaging sensor of a camera.

1

The ‘Invisible’ Processing of Images

When using commercial software to read and display a RAW file there are a number of processes that
happen behind the scenes which are invisible to those who primarily work with the final product (the 8-
bit-per-channel RGB JPG/TIF/etc.). In order to display the image on a screen, the raw image is being
linearized, demosaiced, color corrected, and its pixel values are being non-linearly compressed to yield the
image information most operating systems and display drivers expect. When working with raw sensor data
images it is important to account for each of these steps in order to display your results correctly.

Document Layout

The goal of this document is to describe the steps needed to convert raw data into a viewable image and to
attempt to give some explanation as to why they are required. This is done by first describing the nature
of the raw sensor data itself, and the workflow that needs to be done to it. Then we refer to some free soft-
ware which will be necessary for reading the RAW images. Finally, we present a direct tutorial for reading
your RAW files into MATLAB. Code examples are included, and are written for clarity rather than efficiency.

2 The Nature of the Raw Sensor Data

Raw data from an image sensor obviously contains information about a scene, but it is not intrinsically
recognizable to the human eye. It is a single channel intensity image, possibly with a non-zero minimum
value to represent ‘black’, with integer values that contain 10-14 bits of data (for typical digital cameras),
such as that shown in Figure 1. Rather than speaking about an intrinsic ‘white’ value, no values in the image
will be above some maximum which represents the saturation point of the physical pixel CCD. The output
may also be larger than the expected pixel dimensions of the camera, including a border of unexposed pixels
to the left and above the meaningfully exposed ones.

Figure 1: Detail of raw sensor
data image. Integer valued,
Min = 2047, Max = 15303.

Color Filter Array

Raw sensor data typically comes in the form of a Color Filter Array (CFA).
This is an m-by-n array of pixels (where m and n are the dimensions of the
sensor) where each pixel carries information about a single color channel:
red, green, or blue. Since light falling on any given photosensor in the
CCD is recorded as some number of electrons in a capacitor, it can only
be saved as a scalar value; a single pixel cannot retain the 3-dimensional
nature of observable light. CFAs offer a compromise where information
about each of the three color channels are captured at different locations
by means of spectrum-selective filters placed above each pixel. While you
may only truly know one color value at any pixel location, you can cleverly
interpolate the other two color values from nearby neighbors where those
colors are known. This process is called demosaicing, and produces the m-
by-n-by-3 array of RGB values at each pixel location we typically expect
from a color digital image.

The most common CFA pattern is the Bayer array, shown in Figure 2. There are twice as many pixels that
represent green light in a Bayer array image because the human eye is more sensitive to variation in shades
of green and it is more closely correlated with the perception of light intensity of a scene.

Note that though this pattern is fairly standard, sensors from different camera manufacturers may have
a different “phase.” That is, the “starting” color on the top left corner pixel may be different. The four
options, typically referred to as ‘RGGB’, ‘BGGR’, ‘GBRG’, and ‘GRBG’, indicate the raster-wise orientation
of the first “four cluster” of the image. It is necessary for a demosaicing algorithm to know the correct phase
of the array.

2

Figure 2: Bayer CFA layout.
Each pixel represents either
the red, blue, or green value
of the light incident at the
sensor, depending on arrange-
ment in the array. To get
all three elements at every lo-
cation, demosaicing must be
applied.

Color Channel Scaling

An unfortunate reality of color imaging is that there is no truth
in color. Generally, one cannot look at a color image and
know that it faithfully represents the color of the subject in ques-
tion at the time the image was taken. As a severe simplifica-
tion, one can think of an illuminating light as having an intrin-
sic color and the object it falls upon also having its own color.
These interact, and the light which the camera or eye receives, the
light reflected from the object, is an inextricable combination of
the two.

What this leads to is that any object can look like any color, depending on
the light illuminating it. What we need is a reference point, something we
know should be a certain color (or more accurately, a certain chromatic-
ity), so that we can adjust the R, G, B values of the pixel until it is that
color. This compensates for the color of the illuminating light and reveals
the “true” color of the object. Under the assumption that the same illu-
minant is lighting the entire scene, we can do the same balancing to every

pixel in the image. This is the process of white balancing. Essentially, we find a pixel we know should be
white (or gray), which we know should have RGB values all equal, and find the scaling factors necessary to
make them all equal.

Thus the problem reduces to simply finding two scalars which represent the relative scaling of two of the
color channels to the third. It is typical that the green channel is assumed to be the channel to which the
others are compared. These scalars also take into account the relative sensitivities of the different color
channels, e.g., the fact that the green filter of the CFA is much more transparent than the red or blue filters.
Thus, the green channel scalar is usually 1, while the others are often > 1.

Camera Color Spaces

The number of dimensions of perceivable colors is three. This may seem obvious to those who are familiar
with this result (such as anyone who has ever heard that “any color can be made from a combination of
red, green, and blue light”), but the reduction from an infinite-dimensional space to a three-dimensional one
is far from trivial. An almost-vector space may be constructed for perceivable colors, leading to the use of
many familiar linear algebra operations1 on what we refer to as “the color space”. The ‘almost-’ qualifier is
necessary because one cannot subtract color since there is no such thing as negative light (yet). Fortunately,
this still leaves us with a convex cone of color which is quite amenable to linear algebra.

In the language of linear algebra, we represent the color of a pixel with three coordinates (which we recognize
as the R, G, and B values associated with the pixel). Importantly, these are the pixel’s color coordinates with
respect to a particular basis. What is often not evident is that the basis generated by the physical sensors
of the digital camera is not the same as those of most displays. A full discussion of this topic is beyond the
scope of this document, but we will state simply that we presume the displayable output space to be that
defined as a common standard, sRGB[10].

Thus, though we obtain a familiar RGB image after white balancing and demosaicing a CFA, its colors are
not those which the computer monitor expects. To correct for this, we must apply a linear transformation
(i.e., an appropriate change of basis matrix) to the RGB-vector of each pixel in the image. It is described
later how this matrix can be found.

1In fact, the man who essentially invented linear algebra, Hermann Grassman, was also noted for exploring the laws pertaining
to the perceptual equivalence of the color of various light sources. Treating colors as vectors is historically tied into the origins
of vector spaces themselves!

3

Exif Metadata

In addition to the raw data from the imaging sensor of the digital camera, RAW files carry a large amount of
metadata about the pixel values and the exposure itself. This information comes in the form of an abundance
of Exif tags, which follow a standard TagName: Value format. Like the sensor data, this information is
obtusely tucked away in the RAW file and requires special software to retrieve.

The amount of meta-information retained in most RAW files is substantial. It typically contains information
about the digital camera itself as well as info about the exposure that was captured, both of which are vital
to computational photography. Relevant to this tutorial, this includes information that was mentioned in
the previous sections, such as the white balance multiplier values and the black level offset. A small but
indicative subset of retrievable information is shown below. Note that the metatags which are present in a
file will vary between camera manufactureres.

• Camera\file properties: Camera model, preset white balance multipliers, image width and height,
metering mode, creation time, flash usage, geotagging, etc.

• Photographic properties: ISO, focal length, shutter speed, aperture f-stop, hyperfocal distance,
white balance multipliers measured when shot, etc.

The RAW Image Editing Workflow

In order to work with and display in MATLAB images originating from sensor data, we must take into
account the aforementioned nature of the raw data. The workflow depicted in Figure 3 is a first order
approximation of how to get a ‘correct’ displayable output image from the raw sensor data. Section 4 will
cover how to implement this in MATLAB, but this can also be considered the general approach using any
programming language.

Linearization DemosaicingWhite Balance
Color Space
Correction

Brightness and
Contrast Control

Raw sensor
data

Viewable
output image

Figure 3: Proposed workflow for raw image processing.

3 RAW Utility Software

In order to work with raw images in MATLAB we must first use other pieces of software to crack the
proprietary formats and get at the sweet image data found inside. The following are cost-free and very
useful programs– only one or the other is necessary, so do not worry if you don’t know how to compile C
source code for the first option. Also recommended, though not necessary for the workflow described, is Phil
Harvey’s ExifTool[5], a powerful and scriptable open-source metadata reader.

Dave Coffin’s dcraw

There is a fantastic piece of cross-platform, open-source software, written by Dave Coffin, called dcraw [3]
(pronounced dee-see-raw). This is the open-source solution for reading dozens of different types of RAW files
and outputting an easily read PPM or TIFF file. Many open-source image editing suites incorporate this
program as their own RAW-reading routine. It can read files from hundreds of camera models and perform
many standard processing steps to take a RAW file and generate an attractive output.

dcraw is a command-line program only, and is officially released only as a C source file (though pre-compiled
executables can be found online, and even some MATLAB MEX-implemented versions). This makes it truly
cross-platform, as it can be compiled for any system. It is powerful, comprehensive, cleverly and compactly
coded, and notoriously poorly documented (read: 10k lines, ∼ 50 comments). Nonetheless, the workflow
found in this document is largely informed by that in dcraw.

4

dcraw Functionality

dcraw is run from the command line and accepts a number of optional arguments as well the RAW files to
be operated upon. For a full description, see its Unix-like manpage [2]. In part, it provides options over the
processing of:

• White balance multipliers used

• Output file colorspace

• Demosaicing algorithm, if any

• Gamma correction applied

• Brightness control / repair options

• 8-bit or 16-bit output

• Image rotation

In this tutorial, we make use of the options that make dcraw access the image information from the RAW
file but not process it in any meaningful way so that we may do so ourselves. A useful and informative
tutorial of dcraw’s full capabilities can be found courtesy of Guillermo Luijk[9].

Compiling dcraw

For the purposes described in this document, the dcraw source file is the only file necessary for compilation
of the program; no non-standard supplemental libraries need to be linked, making compilation rather simple.
Depending on your operating system and if you need dcraw to be fully functional or not, you may need
to disable some options or change some defines. The following additional defines were the only changes
necessary to compile dcraw using Microsoft Visual Studio 2008 (as a 32-bit binary on a 64-bit system) with
no errors and all functionality required for this tutorial:

#define _CRT_SECURE_NO_WARNINGS
#pragma warning(disable:4146)
#define NODEPS
#define getc_unlocked _fgetc_nolock
#define fseeko _fseeki64
#define ftello _ftelli64

Adobe DNG Converter

The Adobe DNG Converter[7], unsurprisingly, converts files from almost every proprietary RAW format to
the DNG format. This file format, which stands for ‘Digital Negative’, is open and non-proprietary (though
originally proposed by Adobe). It is based on the TIFF file format, and retains a plethora of Exif metadata
fields from the original RAW files, though sometimes with different names.

The DNG Converter is free of charge, does not prompt for updating constantly, and is a fairly useful tool to
have on hand. Unfortunately, it is only available for Windows and Mac OS X systems.

For our purposes, we must do a slight configuration after downloading the DNG Converter. After opening
Adobe DNG Converter, click on Change Preferences and in the window that opens, use the drop-down
menu to create a Custom Compatibility. Make sure the ‘Uncompressed’ box is checked in this custom com-
batibility mode and the ‘Linear (demosaiced)’ box is unchecked. ‘Backward Version’ can be whatever you like.

5

4 RAW to MATLAB Tutorial

Next, we present a step-by-step guide on how to read a RAW image into MATLAB and process the raw
sensor information into a correctly-displayable image. In an effort to be cross-platform, presented here are
two alternative approaches to the same ends. The first involves the Adobe DNG Converter, which does
a lot of the overhead of calculating and standardizing some parameters/Exif values. It is also unavailable
for Linux, and the associated approach will not work for MATLAB versions older than r2011a. Thus the
second approach, using dcraw, is also presented. The DNG approach is simpler and recommended
for those who can use it (Windows or Mac, MATLAB r2011a or newer).

Both methods enact the same steps of the workflow, but draw their information from different sources.
The specific directions involving the DNG approach are presented in a blue field. Specific directions for the

dcraw approach are in red. Steps that are agnostic to the original file-read method are presented as normal.

Note: These directions have been written from experience with Canon’s CR2 format, with files generated
by a Rebel T3/1100D camera. Other proprietary RAW file types should work with this pipeline since a lot
of the heavy lifting is done by comprehensive commercial software which should be familiar with most formats.

The DNG approach to reading RAW files into MATLAB is fairly simple and utilizes MATLAB’s re-
sources to make automation simple. The first and most important step is ‘borrowed’ from Steve Eddins
at The Mathworks[4]. The process involves converting the RAW file to a DNG file first, and then exploits
the fact that DNG is just a fancy form of TIFF. Note that this requires the TIFF class in MATLAB, which
has only been included since version r2011a. Older versions will give an error.

Option 1: DNG

Note: imfinfo(‘file.dng’) returns a structure which contains the Exif information associated with
the DNG version of the RAW file. This is a useful structure to take a look at, and a large advantage
of this approach is that the DNG Converter standardizes these tags[6]. Thus while this means some of
the information will change tag names from those of the original RAW file type, they will no longer vary
between different RAW file types, leading to a simpler approach below. Also, some necessary information
about the image (such as black level and saturation level) which may not actually be present in the original
RAW Exif information should be present in the DNG due to Adobe’s tests with these cameras. And so, like
many great engineers, we benefit from the hard work of others.

Using dcraw is slightly more complicated due to the non-standardization of information in each camera
manufacturer’s Exif data. Also, some values, such as the black level and saturdation level, are not even
stored in many RAW file types, and must be looked up from a table or calculated. By using ExifTool
and/or dcraw’s verbose output and information mode, we should be able to get the information we need.

Option 2: dcraw

First, run dcraw in verbose mode with ‘as shot’ white balance to run it through the entire processing chain
and output some useful information; a reconnaissance run, as it were. Once dcraw has been compiled and
is in your path, you can simply get this information (and a preliminary image) from the terminal command
line by typing

$ dcraw -v -w -T <raw_file_name>

This should output some information along the lines of “Scaling with darkness <black>,
saturation <white>, and multipliers <r scale> <g scale> <b scale> <g scale>”
where integer numbers fill in the fields above. We will make use of these shortly.

6

4.1 Reading the CFA Image into MATLAB

Option 1: DNG

Assuming you have downloaded and configured the DNG Converter as described in Section 3, first convert
your file into DNG form. Then the following code, with ‘file.dng’ replaced with your filename, will read it
into a MATLAB array called raw, as well as creating a structure of metadata about the image, meta info.
The code also uses information from the metadata to crop the image to only the meaningful area.

filename = ’file.dng’; % Put file name here
warning off MATLAB:tifflib:TIFFReadDirectory:libraryWarning
t = Tiff(filename,’r’);
offsets = getTag(t,’SubIFD’);
setSubDirectory(t,offsets(1));
raw = read(t); % Create variable ’raw’, the Bayer CFA data
close(t);
meta_info = imfinfo(filename);
% Crop to only valid pixels
x_origin = meta_info.SubIFDs{1}.ActiveArea(2)+1; % +1 due to MATLAB indexing
width = meta_info.SubIFDs{1}.DefaultCropSize(1);
y_origin = meta_info.SubIFDs{1}.ActiveArea(1)+1;
height = meta_info.SubIFDs{1}.DefaultCropSize(2);
raw = double(raw(y_origin:y_origin+height-1,x_origin:x_origin+width-1));

Option 2: dcraw

To get the raw sensor data into MATLAB, first we use dcraw with the following options to output a 16bpp
TIFF file. This will also overwrite the previously produced ‘recon image.’

• -4 : writes linear 16-bit, unbrightened and un-gamma-corrected image, same as ‘-6 -W -g 1 1’

• -D : Foregoes demosaicing

• -T : Writes to TIFF file instead of PPM

Thus we output the simple sensor data from the command line with the following:

$ dcraw -4 -D -T <raw_file_name>

You can now read this file into MATLAB using raw = double(imread(‘file.tiff’)), which will
yield the raw CFA information of the camera. The image will be slightly larger than the pixel dimensions
quoted by the camera, but that is because dcraw does not discard some of the valid border pixels that most
programs do.

4.2 Linearizing

The 2-D array raw is not yet a linear image. It is possible that the camera applied a non-linear transfor-
mation to the sensor data for storage purposes (e.g., Nikon cameras). If so, the DNG metadata will contain
a table under meta info.SubIFDs{1}.LinearizationTable. You will need to map the values of the
raw array through this look-up table to the full 10-14 bit values. If this tag is empty (as for Canon cameras),
you do not need to worry about this step. If you are using the dcraw approach, the ‘-4’ option will already
have applied the linearization table so this step is not necessary.

Even if there is no non-linear compression to invert, the raw image might still have an offset and arbitrary
scaling. Find the black level value and saturation level value as below and do an affine transformation to
the pixels of the image to make it linear and normalized to the range [0,1]. Also, because of sensor noise, it
is possible that there exist values in the array which are above the theoretical maximum value or below the
black level. These need to be clipped, as follows.

7

Note: There may exist a different black level or saturation level for each of the four Bayer color channels.
The code below assumes they are the same and uses just one. You may choose to be more precise.

Option 1: DNG

The black level and saturation level values are stored in the DNG metadata and can be accessed as shown.
If the values are stored non-linearly, undo that mapping.

>> if isfield(meta_info.SubIFDs{1},’LinearizationTable’)
ltab=meta_info.SubIFDs{1}.LinearizationTable;
raw = ltab(raw+1);
end
>> black = meta_info.SubIFDs{1}.BlackLevel(1);
>> saturation = meta_info.SubIFDs{1}.WhiteLevel;
>> lin_bayer = (raw-black)/(saturation-black);
>> lin_bayer = max(0,min(lin_bayer,1));

Option 2: dcraw

The black level and saturation level were found during the informational first run of dcraw.

>> black = 2047; % For Canon 1100D, from dcraw
>> saturation = 15000;
>> lin_bayer = (raw-black)/(saturation-black);
>> lin_bayer = max(0,min(lin_bayer,1));

4.3 White Balancing

Now we scale each color channel in the CFA by an appropriate amount to white balance the image. Since
only the ratio of the three colors matters2, we can arbitrarily set one channel’s multiplier to 1; this is usually
done for the green pixels. You may set the other two white balance multipliers to any value you want (e.g.,
the Exif information for the original RAW file may contain standard multiplier values for different standard
illuminants), but here we use the multipliers the camera calculated at the time of shooting.

Once the values are found, multiply every red-location pixel in the image by the red multiplier and every
blue-location pixel by the blue multiplier. This can be done by dot-multiplication with a mask of these
scalars, which can be easily created by a function similar to the following.

Option 1: DNG

An array of the inverses of the multiplier values, for [R G B], is found in meta info.AsShotNeutral.
Thus we invert the values and then rescale them all so that the green multiplier is 1.

>> wb_multipliers = (meta_info.AsShotNeutral).ˆ-1;
>> wb_multipliers = wb_multipliers/wb_multipliers(2);
>> mask = wbmask(size(lin_bayer,1),size(lin_bayer,2),wb_multipliers,’rggb’);
>> balanced_bayer = lin_bayer .* mask;

2This claim discounts color distortions that happen due to saturation and clipping of values scaled too high. [9] contains a
discussion on this effect.

8

Option 2: dcraw

The color-scaling multipliers were found during the informational first run of dcraw.

>> wb_multipliers = [2.525858, 1, 1.265026]; % for test image, from dcraw
>> mask = wbmask(size(lin_bayer,1),size(lin_bayer,2),wb_multipliers,’rggb’);
>> balanced_bayer = lin_bayer .* mask;

function colormask = wbmask(m,n,wbmults,align)
% COLORMASK = wbmask(M,N,WBMULTS,ALIGN)
%
% Makes a white-balance multiplicative mask for an image of size m-by-n
% with RGB while balance multipliers WBMULTS = [R_scale G_scale B_scale].
% ALIGN is string indicating Bayer arrangement: ’rggb’,’gbrg’,’grbg’,’bggr’

colormask = wbmults(2)*ones(m,n); %Initialize to all green values
switch align

case ’rggb’
colormask(1:2:end,1:2:end) = wbmults(1); %r
colormask(2:2:end,2:2:end) = wbmults(3); %b

case ’bggr’
colormask(2:2:end,2:2:end) = wbmults(1); %r
colormask(1:2:end,1:2:end) = wbmults(3); %b

case ’grbg’
colormask(1:2:end,2:2:end) = wbmults(1); %r
colormask(1:2:end,2:2:end) = wbmults(3); %b

case ’gbrg’
colormask(2:2:end,1:2:end) = wbmults(1); %r
colormask(1:2:end,2:2:end) = wbmults(3); %b

end
end

4.4 Demosaicing

Apply your favorite demosaicing algorithm (or MATLAB’s built-in one) to generate the familiar 3-layer RGB
image variable. Note that the built-in demosaic() function requires a uint8 or uint16 input. To get a
meaningful integer image, scale the entire image so that the max value is 65535. Then scale back to 0-1 for
the rest of the process.

>> temp = uint16(balanced_bayer/max(balanced_bayer(:))*2ˆ16);
>> lin_rgb = double(demosaic(temp,’rggb’))/2ˆ16;

4.5 Color Space Conversion

The current RGB image is viewable with the standard MATLAB display functions. However, its pixels will
not have coordinates in the correct RGB space that is expected by the operating system. As described in
Section 2, any given pixel’s RGB values, which represent a vector in the color basis defined by the camera’s
sensors, must be converted to some color basis which the monitor expects. This is done by a linear transfor-
mation, so we will need to apply a 3x3 matrix transformation to each of the pixels.

The correct matrix to apply can be difficult to find. dcraw itself uses matrices (gleaned from Adobe) which
transform from the camera’s color space to the XYZ color space, a common standard. Then the transforma-
tion from XYZ to the desired output space, e.g., sRGB, can be applied. Better yet, these two transformations
can be combined first and then applied once.

9

As an added complication, however, these matrices typically are defined in the direction of sRGB-to-XYZ
and XYZ-to-camera color basis. Thus, the desired matrix must be constructed as follows:

AsRGB←Cam = (ACam←XY Z AXY Z←sRGB)
−1

One other necessary trick, as found in dcraw, is to first normalize the rows of the sRGB-to-Cam matrix
so that each row sums to 1. Though it may seem arbitrary and somewhat ad hoc, we can see that this is
necessary if we consider what will happen when a white pixel in the camera color space is transformed to a
white pixel in the output space: we can argue that it should still be white because we have already applied
white balance multipliers in order to make it so. Since white in both spaces is represented by the RGB

coordinates
[
1 1 1

]T
, we see we must normalize the rows so that1

1
1

Cam

=

ACam←sRGB

1
1
1

sRGB

The matrices used for the output-to-XYZ colorspace transformations can be found at Bruce Lindbloom’s
comprehensive website[8]. For convenience, the most commonly desired one, the matrix from sRGB space
to XYZ space, is given here.

AXY Z←sRGB =

0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041

Option 1: DNG

You can find the entries of the XYZ-to-camera matrix in the meta info.ColorMatrix2 array. These
entries fill the transformation matrix in a C row-wise manner, not MATLAB column-wise.

Option 2: dcraw

The entries for the XYZ-to-camera matrix (times 10,000) for your camera model can be found in the source
code under the adobe coeff function. These entries fill the transformation matrix row-wise.

The following function and example of its application show a possible way of applying this color-space trans-
formation to an image.

function corrected = apply_cmatrix(im,cmatrix)
% CORRECTED = apply_cmatrix(IM,CMATRIX)
%
% Applies CMATRIX to RGB input IM. Finds the appropriate weighting of the
% old color planes to form the new color planes, equivalent to but much
% more efficient than applying a matrix transformation to each pixel.

if size(im,3)˜=3
error(’Apply cmatrix to RGB image only.’)

end

r = cmatrix(1,1)*im(:,:,1)+cmatrix(1,2)*im(:,:,2)+cmatrix(1,3)*im(:,:,3);
g = cmatrix(2,1)*im(:,:,1)+cmatrix(2,2)*im(:,:,2)+cmatrix(2,3)*im(:,:,3);
b = cmatrix(3,1)*im(:,:,1)+cmatrix(3,2)*im(:,:,2)+cmatrix(3,3)*im(:,:,3);

corrected = cat(3,r,g,b);
end

10

>> rgb2cam = xyz2cam * rgb2xyz; % Assuming previously defined matrices
>> rgb2cam = rgb2cam ./ repmat(sum(rgb2cam,2),1,3); % Normalize rows to 1
>> cam2rgb = rgb2camˆ-1;
>> lin_srgb = apply_cmatrix(lin_rgb, cam2rgb);
>> lin_srgb = max(0,min(lin_srgb,1)); % Always keep image clipped b/w 0-1

4.6 Brightness and Gamma Correction

We now have a 16-bit, RGB image that has been color corrected and exists in the right color space for
display. However, it is still a linear image with values relating to what was sensed, which may not be in a
range appropriate for being displayed. We can brighten the image by simply scaling it (adding a constant
would just make it look gray), or something more complicated, e.g., applying a non-linear transformation.
Here we will do both, but be aware that the steps of this subsection are highly subjective and at this point
we are just tweaking the image so it looks good. It is already ‘correct’ in some sense, but not necessarily
‘pretty.’ If you are unhappy with your output image after this tutorial, this is the first place to look.

As a extremely simple brightening measure, we can find the mean luminance of the image and then scale
it so that the mean luminance is some more reasonable value. In the following lines, we (fairly arbitrarily)
scale the image so that the mean luminance is 1/4 the maximum. For the photographically inclined, this
is equivalent to scaling the image so that there are two stops of bright area detail. This is not extremely
clever, but the code is simple.

>> grayim = rgb2gray(lin_srgb);
>> grayscale = 0.25/mean(grayim(:));
>> bright_srgb = min(1,lin_srgb*grayscale);

The image is still linear, which will almost certaintly not be the best for display (dark areas will appear too
dark, etc). We will apply a “gamma correction” power function to this image as a simple way to fix this.
Though the official sRGB compression actually uses a power function with γ = 1

2.4 and a small linear toe
region for the lowest values, this is often approximated by the following simple γ = 1

2.2 compression. Note
that in general you only want to apply such a function to an image that has been scaled to be in the range
[0,1], which we have made sure our input is.

>> nl_srgb = bright_srgb.ˆ(1/2.2);

Congratulations, you now have a color-corrected, displayable RGB image. It is real valued, ranges from 0-1,
and thus is ready for direct display by imshow() Example images for each step of this process are shown
in Figure 4.

11

5 Concluding Remarks

The previous sections have presented a simple approach for accessing in MATLAB the raw sensor data stored
in a RAW file and then applying the basic transformations required to turn them into a displayable image.
The code and explicit directions found in this document are self-sufficient in producing acceptable results,
shown compared in Figure 5 to those produced by dcraw with default settings. This MATLAB code, as
well as supplemental files, may also be found at [11].

Though we briefly justified these steps on account of the nature of the raw data, we should note that this is
not the definitive way to implement this process. The process proposed here can be viewed as the bare-bones
approach necessary to get a ‘correctly displayed’ image from the raw sensor data. For example, there are
other ways to implement color balance and color space conversion; some intelligent methods combine the
two into one step.

There are certainly better ways of adjusting the brightness and contrast than the simplistic method suggested
above. There is a whole world of approaches to color, brightness, and contrast adjustment for creating
visually appealing images (see every resource on photography ever). This guide is not intended to address
such problems, but has aimed to explain the origins of the process so that one can start talking about these
issues. Hopefully this document has done a little to expose the normally hidden process of what happens to
our images so that we can enjoy them.

12

(a) Raw sensor data, raw, m-by-n array with inte-
ger values between BlackLevel and WhiteLevel
(disregarding noise).

(b) Linearized data, lin bayer, m-by-n array with
real values between 0 and 1.

(c) Demosaiced image, lin rgb, m-by-n-by-3. (d) sRGB color space image, lin srgb.

(e) Brightened linear sRGB image, bright srgb. (f) Gamma corrected image, nl srgb.

Figure 4: Example images at every step of the proposed workflow. In order to keep the process transparent,
these images are displayed as is, without any scaling for viewability. E.g., the raw image (a) has meaningful
values between 2047 and 15000, but none of those are very bright compared to the full uint16 range of
0-65335, so the image is mostly black.

13

(a) dcraw output using -w -T options for TIFF output
and measured white balance.

(b) Tutorial’s proposed workflow output.

(c) Tutorial’s output, without the Color Space Conversion
step.

Figure 5: Comparison between dcraw’s output, the proposed workflow output, and the proposed workflow
output neglecting the transformation to sRGB color space. The latter appears desaturated due to the RGB
coordinates of each pixel relating to the Canon 1100D’s sensor, not correct for display.

14

References

[1] Laurent Clevy. Inside the Canon RAW format version 2. http://lclevy.free.fr/cr2/, 2013.

[2] Dave Coffin. Manpage of dcraw. http://www.cybercom.net/˜dcoffin/dcraw/dcraw.1.html,
2009.

[3] Dave Coffin. Decoding raw digital photos in Linux. http://www.cybercom.net/˜dcoffin/
dcraw/, 2013.

[4] Steve Eddins. Tips for reading a camera raw file into MATLAB. http://blogs.mathworks.com/
steve/2011/03/08/tips-for-reading-a-camera-raw-file-into-matlab/, 2011.

[5] Phil Harvey. ExifTool by Phil Harvey. http://www.sno.phy.queensu.ca/˜phil/exiftool/,
2013.

[6] Adobe Systems Inc. Digital Negative Specifications. http://wwwimages.adobe.com/www.adobe.
com/content/dam/Adobe/en/products/photoshop/pdfs/dng_spec_1.4.0.0.pdf, 2012.

[7] Adobe Systems Inc. Camera raw, DNG : Downloads. http://www.adobe.com/products/
photoshop/extend.displayTab2.html#downloads, 2013.

[8] Bruce Lindbloom. RGB/XYZ Matrices. http://www.brucelindbloom.com/index.html?Eqn_
RGB_XYZ_Matrix.html, 2011.

[9] Guillermo Luijk. Dcraw tutorial. http://www.guillermoluijk.com/tutorial/dcraw/index_
en.htm, March 2010.

[10] M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta. A Standard Default Color Space for the
Internet - sRGB. http://www.w3.org/Graphics/Color/sRGB, 1996.

[11] Robert Sumner. Raw guide. http://users.soe.ucsc.edu/˜rcsumner/rawguide/, 2013.

15

http://lclevy.free.fr/cr2/
http://www.cybercom.net/~dcoffin/dcraw/dcraw.1.html
http://www.cybercom.net/~dcoffin/dcraw/
http://www.cybercom.net/~dcoffin/dcraw/
http://blogs.mathworks.com/steve/2011/03/08/tips-for-reading-a-camera-raw-file-into-matlab/
http://blogs.mathworks.com/steve/2011/03/08/tips-for-reading-a-camera-raw-file-into-matlab/
http://www.sno.phy.queensu.ca/~phil/exiftool/
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/products/photoshop/pdfs/dng_spec_1.4.0.0.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/products/photoshop/pdfs/dng_spec_1.4.0.0.pdf
http://www.adobe.com/products/photoshop/extend.displayTab2.html#downloads
http://www.adobe.com/products/photoshop/extend.displayTab2.html#downloads
http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
http://www.guillermoluijk.com/tutorial/dcraw/index_en.htm
http://www.guillermoluijk.com/tutorial/dcraw/index_en.htm
http://www.w3.org/Graphics/Color/sRGB
http://users.soe.ucsc.edu/~rcsumner/rawguide/

